Analysis of fully discrete mixed finite element scheme for stochastic Navier–Stokes equations with multiplicative noise
نویسندگان
چکیده
This paper is concerned with stochastic incompressible Navier–Stokes equations multiplicative noise in two dimensions respect to periodic boundary conditions. Based on the Helmholtz decomposition of noise, semi-discrete and fully discrete time-stepping algorithms are proposed. The convergence rates for mixed finite element methods based time-space approximation probability velocity pressure obtained. Furthermore, establishing some stability using negative norm technique, partial expectations $$H^1$$ $$L^2$$ norms error proved converge optimally.
منابع مشابه
Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملWeak Convergence of Finite Element Approximations of Linear Stochastic Evolution Equations with Additive Noise Ii. Fully Discrete Schemes
We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element met...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics And Partial Differential Equations: Analysis And Computations
سال: 2023
ISSN: ['2194-0401', '2194-041X']
DOI: https://doi.org/10.1007/s40072-023-00290-0